

Date Planned ://_ Actual Date of Attempt ://_					Daily	Tutoria	Sheet - 5	Exp	Expected Duration : 90 Min	
					Level - 1			Exact Duration :		
61.	Which has maximum number of lone-pairs of electrons on the central atom?									
	(A)	XeF_2	(B)	H_3C) [†]	(C)	XeF_4	(D)	XeF_{6}	
62 .	The n	itrogen atom i	in NH ₃ , NI	${ m H}_2^-$ and	l NH ₄ are	all surr	ounded by eigh	ıt electror	ns. When these species are	
	arran	arranged in increasing order of $H-N-H$ bond angle, correct order is:								
	(A)	0 2 1				(B)	$\mathrm{NH_4^+}, \mathrm{NH_2^-}, \mathrm{NH_3}$ $\mathrm{NH_2^-}, \mathrm{NH_3}, \mathrm{NH_4^+}$			
	(C)					(D)				
63.	Which one of the following has the highest boiling point?									
	(A)	AsH_3 (B) Sb			_	(C)			NH_3	
64.	• The correct order of dipole moments of HF, H ₂ S and H ₂ O is:									
	(A)	(A) $HF < H_2S < H_2O$ (C) $HF > H_2S > H_2O$				(B)	HF < H ₂ S > I	$\begin{aligned} &\text{HF} < \text{H}_2 \text{S} > \text{H}_2 \text{O} \\ &\text{HF} > \text{H}_2 \text{O} > \text{H}_2 \text{S} \end{aligned}$		
	(C)					(D)	$HF > H_2O > 1$			
65 .	The correct order of increasing bond length of $C-H(I)$, $C-O$ (II), $C-C$ (III) and $C=C$ (IV) is:									
	(A)					(B)		I < IV < II < III		
	(C)					(D)	III < IV < II < I			
66.	Which of the following compound or ion is planar?									
	(A)	SF_5^-	(B)	SF	1	(C)	SOF_4	(D)	SF_2	
67.		_	hape of trigonal bipyramid whereas IF ₅ has the shape of a square pyramid, It is due to:							
	(A)	(A) Presence of unshared electron pair on I which is oriented so as to minimize repulsion while P in PCl ₅ has no unshared pair								
	(B)									
	(C) P and I are of different groups									
	(D)	(D) F and Cl have different extent of repulsion								
68.	In diborane (B_2H_6) , the bond formed between B and B is called :									
	(A)					(B)	2-centre 2-electron bond coordinate bond			
69.		(C) banana bond (D) coordinate bond Which of the following pairs have identical values of bond order?								
00.	(A)	N_2 and O_2^{2-}	-		p^+ and N_2	(C)	$^{-}$ CN $^{-}$ and O $_{2}^{-}$	(D)	CO and O ₂	
70					2	(-)	2	(_,	2 2 3333 2 2	
70.	(A)	the bond ore one	(B)	zero	n	(C)	two	(D)	one- half	
71.		umber of anti					two	(1)	one nan	
	(A)	4	(B)	10		(C)	12	(D)	14	
72 .		A simplified application of MO theory to the hypothetical molecule OF would give its bond order as :								
-		The second of the deep to the hypothetical molecule of would give to boild office as								

(A)

2.0

(B)

1.5

0.5

(D)

(C)

1.0

73. Which of the following pairs have identical values of bond order?

(A) B_2 and O_2^{2-}

(B) NO^+ and N_2

 ${\rm O}_2$

 C_2 and O_2

(D) All of these

74. Paramagnetism is observed in :

(A) N₂

(B)

(C)

(C)

) He

(D) O_2^{2-}

75. N_2 and O_2 are converted into mono anions, N_2^- and O_2^- respectively. Which of the following is wrong?

(A) In N_2^- , the N-N bond weakens

(B) In O_2^- , the O-O bond length increases

(C) In O_2^- , the bond order decreases

(D) N_2^- becomes diamagnetic